

Palladium-Catalyzed Cycloalkylations of 2-Bromo-1,*n***-dienes with Organoboronic Acids**

Chang Ho Oh,*,† Hye Rhyan Sung,† Su Jin Park,† and Kyo Han Ahn‡

Department of Chemistry, Hanyang University, Sungdong-Gu, Seoul 133-791, Korea, and Department of Chemistry, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, Korea

changho@hanyang.ac.kr

Received February 27, 2002

Abstract: Cascade palladium-catalyzed cycloalkylations of 2-bromo-1,*n*-dienes were accomplished in good to excellent yields, where the alkylpalladium intermediates, formed via an intramolecular Heck reaction of 2-bromo-1,*n*-dienes (*n* $= 6$ or 7), were successfully cross-coupled with various organoboronic acids. The optimal yields were achieved by the use of cesium carbonate in ethanol with $Pd(PPh₃)₄$ as catalyst, with 2-bromo-1,*n*-dienes and organoboronic acids at concentrations of 0.2 and 0.3 M (1.5 equiv), respectively.

The development of a new process forming several bonds in a single synthetic sequence represents an attractive and active field of synthetic organic chemistry.11 Toward this end, there has been a growing interest in the application of palladium-catalyzed processes, since they usually proceed under mild reaction conditions and are tolerant of many functional groups. One severe limitation can be the facile *â*-elimination of the transient alkylpalladium intermediates, unless they are trapped rapidly. A few studies suppressing *â*-eliminations of alkylpalladium intermediates by trapping with hydro $gen² nitrogen³$ or carbon species⁴ have been reported. The reduction of alkylpalladium intermediates by trialkylsilanes is well-known.5 Recently, we found that alkylpalladium intermediates, formed from enediynes,

SCHEME 1

could be reduced with a stoichiometric amount of formic acid.6 Weinreb reported an intramolecular three-component condensation whereby vinyl halide, alkene, and a nitrogen nucleophile were incorporated into a cyclization process to synthesize a diverse group of nitrogen heterocycles.7 Delgado reported a similar tandem process utilizing nickel-promoted cyclization-quenching processes.8 Kibayashi reported that homoallylpalladium complexes, formed from treatment of enynes with a catalytic system of $Pd_2(dba)_{3}CHCl_3$ and AcOH, underwent in situ Stille coupling with various vinyltin reagents to give cyclized products bearing allyl appendages.9 A process of palladium-catalyzed cyclization combined with Suzuki coupling was recently reported by one of us wherein one of the *N*-sulfonyl oxygens of the substrates is thought to stabilize the alkylpalladium intermediate, thus preventing β -elimination.¹⁰ As a part of our ongoing research focused on palladium-catalyzed carbocyclizations of enynes or dienes, we have continued to search for a way of trapping alkylpalladium intermediates, formed from 2 -bromo-1, n -dienes,¹¹ by external carbon nucleophiles leading to cycloalkylated products. Herein we report the successful palladium-catalyzed one-pot cycloalkylation of 2-bromo-1,*n*-dienes with various aryl- or alkenylboronic acids **1a**-**f**, as shown in Scheme 1.

Initially, we chose 2-allyl-2-(2-bromoallyl)malonic acid diethyl ester (**2a**) as a representative substrate in order to optimize reaction conditions by varying palladium catalysts and solvents (Table 1). This reaction was expected to give the cyclized (but uncoupled) product **3aa** and its isomer **6aa**, the (uncyclized) coupled product **4aa**, and the desired product **5aa** and its isomer **7aa**.

When we subjected $2a$ to Ahn's conditions¹⁰ (6:1) (entry 1), the cyclized but uncoupled product **6aa** was isolated † Hanyang University.

(9) (a) Kibayashi, C.; Yamada, H.; Aoyagi, S. *Tetrahedron Lett*. **1997**, *³⁸*, 3027-3030. (b) Kibayashi, C.; Yamada, H.; Aoyagi, S. *Tetrahedron Lett*. **¹⁹⁹⁶**, *³⁷*, 8787-8790.

(10) Ahn, K. H.; Lee, C. W.; Oh, K. S.; Kim, K. S. *Org. Lett.* **2000,** *2,* ¹²¹³-1216.

(11) Bhat, L.; Steinig, A. G.; Appelbe, R.; de Meijere, A. *Eur. J. Org. Chem*. **²⁰⁰¹**, 1673-¹⁶⁸⁰

[‡] Pohang University of Science and Technology.

^{(1) (}a) Trost, B. M. *Acc. Chem. Res.* **1990,** *23,* ³⁴-42. (b) Trost, B. M. *Science* **1991,** *254,* ¹⁴⁷¹-1477.

^{(2) (}a) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 636-644. (b) Grigg. R.; Dorrity, M. J.; Malone, J. F. *Tetrahedron Lett.* **¹⁹⁹⁰**, *³¹*, 1343-1346. (c) Negishi, E.; Owczarczyk, Z.; Lamaty, F.; Vawter, E. J. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 10091-10092. (d) Schweizer, S.; Song, Z.-Z.; Meyer, F. E.; Parsons, P. J.; de Meijere, A. *Angew. Chem., Int. Ed. Engl.* **1993**, *³²*, 1452-1454. (e) Meyer, F. E.; Parsons, P. J.; de Meijere, A. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 6487-6488.

^{(3) (}a) Ba¨ckvall, J. E.; Andersson, P. G. *J. Am. Chem. Soc.* **1990**, 112, 3683-3685. (b) Bystrom, S. E.; Aslanian, R.; Bačkvall, J. E.
Tetrahedron Lett. **1985**, 26, 1749–1752.

Tetrahedron Lett. **1985**, 26, 1749–1752.
(4) (a) Negishi, E.; Zhang, Y. *J. Am. Chem. Soc.* **1989**, *111*, 3454–
3456. (b) Torii, S.; Okumoto, H.; Nishimura, A. *Tetrahedron Lett.* **1991**, *³²*, 4167-4168. (c) Stadmuller, H.; Lentz, R.; Tucker, C. E.; Studemann, T.; Dorner, W.; Knochel, P. *J. Am. Chem. Soc.* **1993**, *115*, 7027–7028. (d) Larock, R. C.; Han, X. *J. Org. Chem.* **1999**, *64*, **1875–1887.** (5) (a) Trost, B. M.; Fleitz, F. J.; Watkins, W. J. *J. Am. Chem. Soc.*

¹⁹⁹⁶, *¹¹⁸*, 5146-5147. (b) Ojima, I.; Donovan, R. J.; Shay, W. R. *J. Am. Chem. Soc.* **1992**, *114*, 6580.

^{(6) (}a) Oh, C. H.; Rhim, C. Y.; Kang, J. H.; Kim, A.; Park, B. S.; Seo, Y. *Tetrahedron Lett*. **¹⁹⁹⁶**, *³⁷*, 8875-8878. (b) Oh, C. H.; Jung, H. H. *Tetrahedron Lett*. **¹⁹⁹⁹**, *⁴⁰*, 1535-1538. (c) Oh, C. H.; Jung, H. H.; Kim, J. S.; Cho, S. W. *Angew. Chem., Int., Ed. Engl.* **²⁰⁰⁰**, *³⁹*, 752- 755. (d) Oh, C. H.; Jung, H. H.; Sung, H. R.; Kim, J. D. *Tetrahedron*

²⁰⁰¹, *57*, 1723–1729.

(7) (a) Weinreb, S. M.; Harris, G. D., Jr.; Herr, R. J. *J. Org. Chem.*
 1993, *58,* 5452–5464. (b) Nylund, C. S.; Klopp, J. M.; Weinreb, S. M.
 Tetrahedron Lett **1994**. 35, 4287–4290. (c) Lin *Tetrahedron Lett*. **¹⁹⁹⁴**, *³⁵*, 4287-4290. (c) Lin, X.; Artman, G. D., III; Stien, D.; Weinreb, S. M. *Tetrahedron* **²⁰⁰¹**, *⁵⁷*, 8779-8791. (8) (a) Delgado, A.; Sole, D.; Cancho, Y.; Llebaria, A.; Moreto, J. M.

J. Am. Chem. Soc. **1994,** *116,* ¹²¹³³-12134. (b) Delgado, A.; Sole, D.; Cancho, Y.; Llebaria, A.; Moreto, J. M. *J. Org. Chem.* **1996,** *61,* ⁵⁸⁹⁵- 5904.

	E. E, Е 1a (1.5 eq.) Br 'Ph Е Ph F "Pd" (3 mol%) E Ph 3aa base (2.0 eq.) 5aa 2a 7aa 4aa баа								
	Pd catalysts	base	solvent	temp (°C)/ time (h)	products (ratio)	% yield			
	Pd(PPh ₃) ₄	K_2CO_3	THF(aq)	60/3	6aa	59			
2	Pd(PPh ₃) ₄	K_2CO_3	DMF	60/10	7aa	41			
3	Pd(PPh ₃) ₄	K_2CO_3	ethanol	60/4	3aa, 5aa $(1:2)$	54			
4	Pd(PPh ₃) ₄	Cs_2CO_3	DMF	60/4	7aa	75			
$\overline{5}$	Pd(PPh ₃) ₄	Cs ₂ CO ₃	ethanol	60/2	5aa	85			
6	$Pd(OAc)2/PPh3(1:2)$	Cs ₂ CO ₃	ethanol	60/4	5aa	80			
$\overline{7}$	$Pd(OAc)_2$	Cs_2CO_3	ethanol	60/4	5aa	79			
8	$Pd_2(dba)_{3}/PPh_3(1:4)$	Cs_2CO_3	ethanol	60/4	5aa	69			
9	$Pd(PPh3)2Cl2$	Cs_2CO_3	ethanol	60/4	5aa	48			

TABLE 1. Pd-Catalyzed Cycloalkylations of 2-Bromo-1,6-diene 2a with Phenylboronic Acid (1a)

as the predominant product. When the reaction was carried out in DMF (entry 2), the isomer of the desired product **7aa** was obtained in 41% yield, suggesting that the reaction solvent might play a crucial role. Among protic solvents, ethanol gave the best result, where the desired product **5aa** was isolated along with cyclized diene **3aa** in a ratio of 1:2 (entry 3). Cesium carbonate as a base gave much better results than potassium carbonate (entries 4 and 5). The nature of the palladium catalyst was also surveyed, and $Pd(PPh₃)₄$ and $Pd(OAc)₂$ were shown to be optimal. On the basis of these experiments, the optimal yield was achieved by the use of cesium carbonate in ethanol with $Pd(PPh_3)_4$ as catalyst, with the substrate **2a** and phenylboronic acid **1a** at concentrations of 0.2 and 0.3 M (1.5 equiv), respectively.

Using these conditions, we have tested the scope of this method with a series of bromodienes **2a**-**^f** and organoboronic acids and our results are summarized in Table 2. We have tested cycloalkylations of a series of 1,6-, 1,7-, and 1,8-bromodiene with organoboronic acids. The 2-bromo-1,6-diene substrate **2a** smoothly underwent cycloalkylations to the expected products **5aa**-**af** in 58 to 85% yields. Compared to the 2-bromo-1,6-diene **2a**, 2-bromo-1,7-diene **2b** was cycloalkylated with arylboronic acids **1a**-**^c** to give the expected products **5ba**-**bc**, but with alkenylboronic acids **1d**-**^f** to give the Suzuki-type products **4bd**-**bf** as major products. 2-Bromo-1,8-diene **2c** under similar conditions gave only the Suzuki-type products **4** with both arylboronic acid and alkenylboronic acid. The more substituted 2-bromo-1,6-diene **2d** underwent such cycloalkylation less readily. While cycloalkylation of **2d** with arylboronic acid **1a** gave the product **5da** exclusively, cycloalkylation of **2d** with alkenylboronic acid **1d** gave a mixture of **4dd** and **5dd**.

Next, heteroatom-linked bromodienes **2e** and **2f** were tested. A nitrogen-containing bromodiene **2e** was tested with aryl- and alkenylboronic acids for comparison with Ahn's results. The substrate **2e** was smoothly cycloalkylated with the arylboronic acids **1a**, **1b**, and **1c**, but less selectively with the alkenylboronic acid **1d**. An oxygencontaining bromodiene **2f** was also cycloalkylated with both arylboronic acids **1a**-**^b** and an alkenylboronic acid **1e** to give the products **5fa**, **5fb**, and **5fe** in 78%, 72%, and 33% yields, respectively.

When this method was further extended to doublecycloalkylation by using 2-bromo-1,6-diene **2a** and phen-

SCHEME 2

SCHEME 3

yldiboronic acid **1g**, the product **5ag** was isolated in 51% yield (Scheme 2).

A plausible mechanism is depicted in Scheme 3, as suggested before.10 First, a 2-bromo-1,*n*-diene oxidatively adds to Pd(0) to form intermediate *A*. Intermediate *A* might couple with $RB(OH)_2$ to give 4 through a direct Suzuki coupling, or undergo intramolecular carbopalladation to form the Heck-type intermediate *B*. Intermediate *B* could undergo *â*-elimination to form diene **3**, a Heck product, or further cross-coupling with $RB(OH)_2$ through a Suzuki-type reaction to form the product **5**. Consistent with the formation of *A* as the first intermediate, we observed that the higher concentration of organoboronic acid (**1**) gave the more Suzuki product **4** and lower concentration of organoboronic acid gave the more Heck product **3**.

In conclusion, we have established cascade cycloalkylation reactions of 2-bromo-1,*n*-dienes with various organoboronic acids, where the alkylpalladium intermediates, formed via an intramolecular Heck reaction of 2-bormo-1,*n*-dienes ($n = 6$ or 7), were successfully crosscoupled with various organoboronic acids to give the cycloalkylated products **5** in synthetically valuable yields.

$\overline{2}$	3 mol% Pd(PPh ₃) ₄ $Br + RB(OH)_{2}$ 2.0 eq. Cs_2CO_3 Ethanol $1a-f$	3	5	
$2-Promo-1, n-diene(2)$	$RB(OH)$, (1)	temp $(^{\circ}C)$ time(h)	products	% yield (ratio)
	$CcHcB(OH)$, (1a)	60/2.0	5aa	85
	$(4-HOCH2)C6H4B(OH2)(1b)$	60/2.0	5ab	82
	3,5-(CH ₃) ₂ C ₆ H ₃ B(OH) ₂ (1c)	60/2.0	5ac	76
2a $E = EtO2C$	$C6H5CH=CHB(OH)$ ₁ (1d)	70/1.0	5ad	68
	n -C,H _a CH=CHB(OH), (1e)	50/1.0	5ae	72
	t -C ₄ H ₉ CH=CHB(OH), (1f)	70/2.0	3af, 5af	35, 58
	$CsHsB(OH)s$ (1a)	60/0.5	5ba	87
	$(4-HOCH2)C6H4B(OH)2(1b)$	60/1.0	4bb, 5bb	89 (1:4)
	$3,5-(CH_1), C_6H_3B(OH), (1c)$	60/1.0	5bc	81
2b	$C6H5CH=CHB(OH)$, (1d)	80/0.5	4bd, 5bd	85(2:1)
	n -C _a H _a CH=CHB(OH), (1e)	60/0.5	4be	85
	t -C ₄ H ₂ CH=CHB(OH) ₂ (1f)	60/0.5	4bf	89
Br/	$CaHcB(OH)$, (1a)	80/0.5	4ca	73
2 _c	$CsHsCH=CHB(OH)$, (1d)	60/2.0	4cd	83
	$C_6H_5(OH)$ ₂ (1a)	60/1.0	5da	76
2d	$CsHsCH=CHB(OH), (1d)$	60/2.0	4dd, 5dd	60(1:2)
	$CsHsB(OH)$, (1a)	70/0.5	5ea	82
	$(4-HOCH2)C6H4B(OH2, (1b))$	60/2.0	5eb	90
p -Ts-	3,5- $(CH_3)_2C_6H_3B(OH)_2(1c)$	60/2.0	5ec	75
	$CnHnCH=CHB(OH), (1d)$	70/2.0	5ed	51
	$CsHsB(OH)$, (1a)	RT/22	5fa	78
	$(4-HOCH2)C6H4B(OH2)(1b)$	RT/20	5fb	72
	n -C ₄ H ₉ CH=CHB(OH) ₂ (1e)	50/2.0	5fe	33

TABLE 2. Pd-Catalyzed Cycloalkylations of 2-Bromo-1,*n***-dienes 2 with Organoboronic Acids**

Experimental Section

General Procedure. Cycloalkylation of 2-Bromo-1,6 diene 2a is a general procedure. Into a mixture of cesium carbonate (69.1 mg, 0.21 mmol) and phenylboronic acid **1a** (26.4 mg, 0.21 mmol) was added a solution of **2a** (45.1 mg, 0.14 mmol) in dry ethanol (0.7 mL) and then tetrakistriphenylphosphine palladium (4.9 mg, 0.0042 mmol) was added at $0 \degree$ C. The resulting mixture was stirred under argon atmosphere for 2 h in a preheated 60 °C oil bath. Then the reaction mixture was concentrated under reduced pressure, diluted with water (10 mL), and extracted with ether (2×20 mL). The organic layers were combined, washed with brine, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and purified by flash chromatography (n -hexane/ethyl acetate $= 20$: 1) as an eluent to give the cyclized product **5aa** (39.0 mg, 85%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) *δ* 7.30-7.18 (m, 5H) 4 98 (g, *I* = 2.4 Hz, 1H) 4 16 (m, *I* = 2.4 Hz, 1H) 4 16 (m, *I* 5H), 4.98 (q, $J = 2.4$ Hz, 1H), 4.87 (q, $J = 2.4$ Hz, 1H), 4.16 (m, 4H), $3.06 - 2.94$ (m, 3H), 2.86 (m, 1H), 2.51 (dd, $J = 13.6, 9.8$

Hz, 1H), 2.37 (dd, $J = 13.6$, 7.6 Hz, 1H), 1.86 (dd, $J = 13.2$, 10.0 Hz, 1H), 1.23 (t, $J = 6.8$ Hz, 3H), 1.20 (t, $J = 6.8$ Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.54, 151.41, 140.20, 128.71, 128.19, 125.87, 106.49, 61.53, 61.45, 58.30, 43.81, 41.09, 40.37, 39.65, 14.15, 14.11; FT-IR (neat, cm-1) 2983, 2935, 1731, 1656, 1495, 1453, 1366, 1253, 1182, 1070, 1019, 884, 744, 700; HRMS calcd for $C_{19}H_{24}O_4$ (M⁺) 316.1675, found 316.1670.

Acknowledgment. We wish to acknowledge the financial support of KOSEF (2001-1-123-001-5), Korea and the Center for Molecular Design and Synthesis (CMDS)

Supporting Information Available: Details on the spectral data for **5aa**-**ag**, **5ba**-**bd**, **5da**, **5dd**, **5ea**-**ed**, **5fa**, **5fb**, **5fe**, **4bd**, **4be**, **4bf**, **4ca**, and **4cd**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO025665T